On the Harnack inequality for antisymmetric s-harmonic functions

نویسندگان

چکیده

We prove the Harnack inequality for antisymmetric s-harmonic functions, and more generally solutions of fractional equations with zero-th order terms, in a general domain. This may be used conjunction method moving planes to obtain quantitative stability results symmetry overdetermined problems semilinear driven by Laplacian. The proof is split into two parts: an interior away from plane symmetry, boundary close symmetry. these first establishing weak super-solutions local boundedness sub-solutions both case. En passant, we also new mean value formula functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Harnack Inequality for Α-harmonic Functions on the Sierpiński Triangle

The analysis and probability theory on fractals underwent rapid development in last twenty years, see [1, 11, 27, 28] and the references therein. Diffusion processes were constructed for the Sierpiński triangle [4, 15, 21] and more generally for some simple nested fractals [17] and Sierpiński carpets [2, 18, 20, 22]. In [25] Stós introduced a class of subordinate processes on d-sets, called α-s...

متن کامل

Harnack ’ s inequality for some nonlocal equations and application

In this paper, we establish a Harnack’s inequality for positive solutions of the nonlocal inhomogeneous problem

متن کامل

Harnack Inequality on Homogeneous Spaces

We consider a connected, locally compact topological space X. We suppose that a pseudo-distance d is defined on X that is, d : X × X 7−→ R+ such that d (x, y) > 0 if and only if x 6= y; d (x, y) = d (y, x) ; d (x, z) ≤ γ [d (x, y) + d (y, z)] for all x, y, z ∈ X, where γ ≥ 1 is some given constant and we suppose that the pseudo-balls B (x, r) = {y ∈ X : d (x, y) < r} , r > 0, form a basis of op...

متن کامل

Boundary Harnack principle and elliptic Harnack inequality

We prove a scale-invariant boundary Harnack principle for inner uniform domains over a large family of Dirichlet spaces. A novel feature of our work is that our assumptions are robust to time changes of the corresponding diffusions. In particular, we do not assume volume doubling property for the symmetric measure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2023

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2023.109917